Cover Feature: General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries (Chem. Eur. J. 9/2018)
نویسندگان
چکیده
منابع مشابه
Hierarchically Nanostructured Transition Metal Oxides for Lithium‐Ion Batteries
Lithium-ion batteries (LIBs) have been widely used in the field of portable electric devices because of their high energy density and long cycling life. To further improve the performance of LIBs, it is of great importance to develop new electrode materials. Various transition metal oxides (TMOs) have been extensively investigated as electrode materials for LIBs. According to the reaction mecha...
متن کاملLa2O3 hollow nanospheres for high performance lithium-ion rechargeable batteries.
An efficient and simple protocol for synthesis of novel La(2)O(3) hollow nanospheres of size about 30 ± 2 nm using polymeric micelles is reported. The La(2)O(3) hollow nanospheres exhibit high charge capacity and cycling performance in lithium-ion rechargeable batteries (LIBs), which was scrutinized for the first time among the rare-earth oxides.
متن کاملMetal hydrides for lithium-ion batteries.
Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the fi...
متن کاملMo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries.
We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo(6+). The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemistry - A European Journal
سال: 2017
ISSN: 0947-6539
DOI: 10.1002/chem.201704464